Institut für Statistik
print

Sprachumschaltung

Navigationspfad


Inhaltsbereich

Recommended Literature

Literature

  • Held, L, Sabanés Bové, D.: Likelihood and Bayesian Inference. Springer 2020, Chapters 1-7.
  • Fahrmeir, L., Kneib, Th., Lang, S., Marx, B.D.: Regression. Springer 2021, Chapters 1-4.
  • Bischl, B. et al.: Introduction to Machine Learning (I2ML). https://slds-lmu.github.io/i2ml/ The first 10 chapters of I2ML cover the BSc part.
  • Anton, H., & Rorres, C. (2013). Elementary linear algebra: applications version. John Wiley & Sons.
  • Peter Philip (2024). Calculus I and Calculus II for Statistics students. Lecture Notes, LMU Munich.
  • Grimmett, G. and Stirzaker, D.: Probability and Random Processes. Oxford University Press, 2001, Chapters 1-4 and 7
In-depth Literature
  • G. James, D. Witten, T. Hastie, R. Tibshirani. An Introduction to Statistical Learning. MIT Press, 2010.
  • The elements of statistical learning: data mining, inference and prediction. T. Hastie, R. Tibshirani, and J. Friedman. Springer, 2 edition, (2009)
  • E. Alpaydin. Introduction to Machine Learning. MIT Press, 2010. 
  • Bishop, C. M. (2007). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer.
  • K. Murphy. Machine Learning: a Probabilistic Perspective link
  • Grimmett, G., Stirzaker D.: Probability and Random Processes. Oxford University Press, 2020, Chapters 1-4 and 7.1-7.4
  • Lang, S.: Matrixalgebra. https://www.uibk.ac.at/statistics/personal/lang/publications/matrixalgebra.pdf, Chapters 1–9
  • Hoffman, K. M., Kunze, R. (1971). Linear Algebra. Englewood Cliffs, NJ: Prentice-Hall. 
  • Casella, G., Berger, R. L. (2002). Statistical inference. Duxbury Pacific Grove, CA.
  • Wasserman, L. (2010). All of statistics: a concise course in statistical inference. New York: Springer.