Institut für Statistik
print

Sprachumschaltung

Navigationspfad


Inhaltsbereich

Stellenangebote am Institut für Statistik

KurzbeschreibungVorkenntnisseVertragsdauerKontakt
student assistant
  • You have good programming skills (preferably R) and are experienced with LaTeX
  • You have a very good command of written and spoken English
  • You are able to explain complex ideas in a comprehensive and concise manner
  • Ideally, you have prior knowledge in the field of Machine Learning / Predictive
    Modellin
  • Preferably, you already have a Bachelor in Statistics, Computer Science, Data
    Science, Mathematics, Physics, Econometrics or a related quantitative field
  • You have a reliable, independent way of working
8-12h/Woche

Julia.Moosbauer@campus.lmu.de

Doctoral or Early Postdoctoral Fellowship Position
in Deep Learning for Genomic Sequence Data
  • Degree (Master or PhD level) in computer science, machine learning, statistics,
    biostatistics, bioinformatics, or a related quantitative field
  • Excellent knowledge of deep learning, ideally experience with sequential data
  • Experience with deep learning frameworks (e.g. PyTorch, Tensorflow, or Keras)
  • Strong programming skills (R, Python, or C++) and experience in working with
    high-performance computation
  • Interest in working with genomic data
  • Eagerness to work with, and, if postdoc, support and supervise a team of highly motivated PhD and graduate students
  • Fluency in written and spoken English

martin.binder@stat.uni-muenchen.de

Open Scientific Manager Position at the Working
Group for Computational Statistics (LMU) and the
Munich Center for Machine Learning
  • Ph.D. in a quantitative field or natural sciences
  • An affinity for research in Data Science und Machine Learning
  • Experience with writing grant proposals and research reports
  • Structured, organized mode of operation to stay on top of things
  • Strong communication and interpersonal skills
  • Highly proficient in written and spoken German and English

tieubinh.ly@stat.uni-muenchen.de

zwei studentische Hilfskräfte
  • Gute R und LaTeX Kenntnisse, sowie vorhandene Englischkenntnisse.
  • Erste Erfahrungen mit Git sind von Vorteil aber keine Voraussetzung.
  • Interesse an Themen rund um R, Data Science und Machine Learning.
  • Selbstständige und eigenverantwortliche Arbeitsweise.
8-10h/Woche

moritz.herrmann@stat.uni-muenchen.de

Open Ph.D. / Postdoctoral Fellowship Position at
the Working Group for Computational Statistics
  • Degree in computer science, mathematics, statistics,
    data science or a related discipline
  • Strong knowledge of statistics and machine learning, experience with at least one
    of advanced regression modelling, deep learning and uncertainty quantification in
    learning models required
  • Good programming skills (e.g.: R, Python, C++)
  • Fluent spoken and written English
  • For Postdoc:
    Publication track record in relevant conferences and journals of the field
2 years

tieubinh.ly@stat.uni-muenchen.de

Studentische Mitarbeiter/innen (225 KByte)
  • RMarkdown
  • Shiny 
  • Audio/Videobearbeitung
  • Bayes-Statistik 
  • E-Assessment
flexibel 2019/20

volker.schmid@lmu.de

Studentische Hilfskraft Prüfungsauschuss (225 KByte)
  •  Microsoft Office
  • Deutsch/Englisch
bis zu 10h/Woche

pav@stat.uni-muenchen.de

Professorship (W2) of Statistics, focussing on Social Surveys and Labour Market Research (69 KByte)

 

6 years

dekanat16@lmu.de