Module Catalogue

Master’s Programme: Statistics and Data Science
(Master of Science, M.Sc.)
(120 ECTS credits, for the start of studies in the winter semester)

Based on the Prüfungs- und Studienordnung of 8 December 2021
88/533/---/M0/H/2021
Issued on 09 May 2022
Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviations and annotations</td>
<td>4</td>
</tr>
<tr>
<td>Module: P 1 Statistical Modelling</td>
<td>5</td>
</tr>
<tr>
<td>Module: P 2 Supervised Learning</td>
<td>7</td>
</tr>
<tr>
<td>Module: WP 1 Optimization</td>
<td>9</td>
</tr>
<tr>
<td>Module: WP 2 Preclinical and Clinical Studies</td>
<td>11</td>
</tr>
<tr>
<td>Module: WP 3 Complex Samples and Data Structures</td>
<td>13</td>
</tr>
<tr>
<td>Module: WP 4 Basic Concepts and Structures in Official Statistics, Dissemination and Privacy Protection</td>
<td>15</td>
</tr>
<tr>
<td>Module: WP 5 Causal Inference</td>
<td>17</td>
</tr>
<tr>
<td>Module: WP 6 Survival Analysis</td>
<td>19</td>
</tr>
<tr>
<td>Module: P 3 Statistical Inference</td>
<td>21</td>
</tr>
<tr>
<td>Module: P 4 Consulting</td>
<td>23</td>
</tr>
<tr>
<td>Module: WP 7 Deep Learning</td>
<td>25</td>
</tr>
<tr>
<td>Module: WP 8 Advanced Machine Learning</td>
<td>27</td>
</tr>
<tr>
<td>Module: WP 9 Applied Machine Learning</td>
<td>29</td>
</tr>
<tr>
<td>Module: WP 10 Diagnostic Accuracy Studies</td>
<td>31</td>
</tr>
<tr>
<td>Module: WP 11 Selected Topics of Biostatistics</td>
<td>33</td>
</tr>
<tr>
<td>Module: WP 12 Analysis of High-dimensional Biological Data</td>
<td>35</td>
</tr>
<tr>
<td>Module: WP 13 Introduction to Medical Terminology</td>
<td>37</td>
</tr>
<tr>
<td>Module: WP 14 Data Collection and Questionnaire Design</td>
<td>39</td>
</tr>
<tr>
<td>Module: WP 15 Official Statistics on Households, Enterprises, Economies and Populations</td>
<td>41</td>
</tr>
<tr>
<td>Module: WP 16 Advanced Methods in Social Statistics and Social Data Science</td>
<td>43</td>
</tr>
<tr>
<td>Module: WP 17 Econometric Theory</td>
<td>45</td>
</tr>
<tr>
<td>Module: WP 18 Time Series</td>
<td>47</td>
</tr>
<tr>
<td>Module: WP 19 Machine Learning in Econometrics</td>
<td>49</td>
</tr>
<tr>
<td>Module: WP 20 Selected Topics of Econometrics</td>
<td>51</td>
</tr>
<tr>
<td>Module: WP 21 Regression for Correlated Data</td>
<td>53</td>
</tr>
<tr>
<td>Module: WP 22 Decision Theory</td>
<td>55</td>
</tr>
<tr>
<td>Module: WP 23 Methodological Discourses in Statistics and Data Science</td>
<td>57</td>
</tr>
<tr>
<td>Module: WP 24 Design of Experiments</td>
<td>59</td>
</tr>
<tr>
<td>Module: WP 25 Advanced Mathematical Concepts for Statistics and Data Science</td>
<td>61</td>
</tr>
<tr>
<td>Module: WP 26 Stochastic Processes</td>
<td>63</td>
</tr>
<tr>
<td>Module: WP 27 Teaching Statistics and Data Science</td>
<td>65</td>
</tr>
<tr>
<td>Module: WP 28 Statistical Literacy</td>
<td>67</td>
</tr>
<tr>
<td>Module: WP 29 Selected Topics of Applied Statistics</td>
<td>69</td>
</tr>
<tr>
<td>Module: WP 30 Selected Software for Applied Statistics</td>
<td>71</td>
</tr>
</tbody>
</table>
Module: WP 31 Advanced Research Methods in Applied Statistics ... 73
Module: WP 32 Current Research in Machine Learning ... 75
Module: WP 33 Automated Machine Learning ... 77
Module: WP 34 Selected Topics of Machine Learning ... 79
Module: WP 35 Statistical Methods in Epidemiology ... 81
Module: WP 36 Advanced Methods in Biostatistics ... 83
Module: WP 37 Selected Biostatistical Applications ... 85
Module: WP 38 Measurement and Modelling in Social Sciences .. 87
Module: WP 39 Computational Social Science ... 89
Module: WP 40 Selected Topics of Social Statistics and Social Data Science 91
Module: WP 41 Nonparametric Econometrics ... 93
Module: WP 42 Current Research in Econometrics ... 95
Module: WP 43 Advanced Applied Econometrics ... 97
Module: WP 44 Advanced Statistical Modelling ... 99
Module: WP 45 Spatial Statistics ... 101
Module: WP 46 Selected Topics of Methodology and Modelling .. 103
Module: WP 47 Advanced Programming .. 105
Module: WP 48 Recent Advances in Theoretical Statistics ... 107
Module: WP 49 Selected Topics of Statistical Computing .. 109
Module: WP 50 Selected Topics of Programming .. 111
Module: WP 51 Advanced Research Methods in Theoretical Statistics 113
Module: WP 52 Advanced Research Methods in Machine Learning ... 115
Module: WP 53 Advanced Research Methods in Biostatistics ... 117
Module: WP 54 Advanced Research Methods in Social Statistics and Social Data Science 119
Module: WP 55 Advanced Research Methods in Econometrics .. 121
Module: WP 56 Advanced Research Methods in Methodology and Modelling 123
Module: P 5 Final Module ... 125
Appendix I: Rules for the choice of compulsory elective modules ... 126
Abbreviations and annotations

CP credit points, ECTS credits
ECTS European Credit Transfer and Accumulation System
h hours
SoSe summer semester
SWS contact hours
WiSe winter semester
WP compulsory elective course/module
P mandatory course/module

1. The ECTS credits assigned in the module catalogue are designated as follows: credit points not listed in parentheses are awarded when the relevant examination of the module or module parts has/have been completed successfully. Credit points in parentheses are listed for calculation purposes only.

2. The semester, in which a module should be taken, can either be mandatory or considered a recommendation, depending on the information in Anlage 2 of the Prüfungs- und Studienordnung of your degree programme. In this module catalogue, the options are indicated as “scheduled semester” or “recommended semester”.

3. Please note: The module catalogue is for orientation purposes only while the provisions of the Prüfungs- und Studienordnung of your degree programme in the current version (in German only) are legally binding. See www.lmu.de/studienangebot and select your degree programme.
Module: P 1 Statistical Modelling

Programme

Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>P 1.1 Statistical Modelling (Lecture)</td>
<td>WiSe and SoSe</td>
<td>60 h (4 SWS)</td>
<td>120 h</td>
<td>(6)</td>
</tr>
<tr>
<td>Exercise</td>
<td>P 1.2 Statistical Modelling (Exercise Course)</td>
<td>WiSe and SoSe</td>
<td>30 h (2 SWS)</td>
<td>60 h</td>
<td>(3)</td>
</tr>
<tr>
<td>Lecture</td>
<td>P 1.3 Lecture Series on Statistical Modelling</td>
<td>WiSe and SoSe</td>
<td>30 h (2 SWS)</td>
<td>60 h</td>
<td>(3)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 12 ECTS credits have to be acquired. Class attendance averages about 8 contact hours. Including time for self-study, 360 hours have to be invested.

Module type

Mandatory module with mandatory courses

Usability of the module in other programmes

None

Elective guidelines

None

Entry requirements

The requirements of the eligibility process for the master's degree in statistics and data science are expected; in particular, basic knowledge of regression modelling and statistical inference is required.

Semester

Recommended semester: 1

Duration

The completion of the module takes 1 semester.

Content

In this course, the fundamental concepts of statistical modelling including different approaches are introduced. The wide range of regression models including generalized linear and additive models, duration time models is covered. Furthermore, latent variable models, measurement errors and beyond mean regression are discussed. Strategies for model selection and basic aspects of directed cyclic graphs (DAGs) and causal inference complete the lecture.

Learning outcomes

The students understand and apply different types of statistical models in real world problems. They know how to perform model selection and model checking and they are able to bridge theoretical concepts and applied questions.
<table>
<thead>
<tr>
<th>Type of examination</th>
<th>Written exam or oral examination or term paper or exercise portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of assessment</td>
<td>The successful completion of the module will be graded.</td>
</tr>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Küchenhoff</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: P 2 Supervised Learning

<table>
<thead>
<tr>
<th>Related module parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
</tr>
<tr>
<td>Lecture</td>
</tr>
<tr>
<td>Exercise</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

<table>
<thead>
<tr>
<th>Module type</th>
<th>Mandatory module with mandatory courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usability of the module in other programmes</td>
<td>None</td>
</tr>
<tr>
<td>Elective guidelines</td>
<td>None</td>
</tr>
<tr>
<td>Entry requirements</td>
<td>The requirements of the eligibility process for the master's degree in statistics and data science are expected. In particular, suitable background knowledge is needed on machine learning, basic programming (ideally in R or Python), matrix algebra, and basic optimization.</td>
</tr>
<tr>
<td>Semester</td>
<td>Recommended semester: 1</td>
</tr>
<tr>
<td>Duration</td>
<td>The completion of the module takes 1 semester.</td>
</tr>
<tr>
<td>Content</td>
<td>The course introduces the theoretical foundation of supervised machine learning as well as the most prominent methods in this field. It covers the basic principles of risk minimization and information-theoretic concepts such as entropy and Kullback-Leibler divergence. Furthermore, the curse of dimensionality is explained. The capacity of a learner, PAC learning, the no free lunch theorem, and regularization is covered in the first part. In the second part, different prominent learners such as linear and non-linear support vector machines, Gaussian processes and boosting are explained.</td>
</tr>
<tr>
<td>Learning outcomes</td>
<td>Students understand the foundations of risk minimization, information theory, learning theory and regularization. They are familiar with the inner workings of advanced machine learning approaches.</td>
</tr>
<tr>
<td>Type of examination</td>
<td>Written exam or oral examination or term paper or exercise portfolio</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Type of assessment</td>
<td>The successful completion of the module will be graded.</td>
</tr>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Bischl</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 1 Optimization

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 1.1 Optimization (Lecture)</td>
<td>WiSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 1.2 Optimization (Exercise Course)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
The requirements of the eligibility process for the master’s degree in statistics and data science are expected. In particular, suitable background knowledge is needed on one- and multidimensional calculus, linear algebra and a programming language.

Semester
Recommended semester: 1

Duration
The completion of the module takes 1 semester.

Content
The course introduces the theoretical foundation of optimization as well as the most prominent methods in this field. It covers the taxonomy of optimization problems and other basic principles of optimization, considering univariate and multivariate problems and commonly used approaches to tackle these. This contains first- and second-order methods as well as stochastic approaches. The course further deals with constrained optimization problems, derivative-free methods as well as multi-criteria optimization.

Learning outcomes
Students understand how to describe and apply optimization problems and know how to solve these in univariate and multivariate settings, potentially with constraints or with multiple criteria.

Type of examination
Written exam or oral examination or term paper or exercise portfolio
<table>
<thead>
<tr>
<th>Type of assessment</th>
<th>The successful completion of the module will be graded.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Bischl</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 2 Preclinical and Clinical Studies

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 2.1 Preclinical and Clinical Studies (Lecture)</td>
<td>WiSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 2.2 Preclinical and Clinical Studies (Exercise Course)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
The requirements of the eligibility process for the master’s degree in statistics and data science are expected.

Semester
Recommended semester: 1

Duration
The completion of the module takes 1 semester.

Content
The course addresses statistical issues arising in the drug development process.

The first part introduces the main phases of the drug development process and then focuses on preclinical studies by covering basic principles of pharmacokinetics, pharmacodynamics and toxicology.

The second part concentrates on the design, analysis and interpretation of clinical studies. It covers different randomization techniques, sample size calculation for binary and continuous outcomes and multiple testing issues arising in the analysis of clinical studies. It also introduces more advanced designs including for instance sequential, cross-over and stepped-wedge designs.

The third part of the lecture covers more advanced topics including for instance Bayesian methods in the analysis of preclinical and clinical studies and important issues arising in the treatment of intercurrent events and missing values.
Learning outcomes

At the completion of the course, students understand the most important concepts and challenges in the design, analysis and interpretation of preclinical and clinical studies. They have a basic understanding of the most fundamental aspects of pharmacokinetic and pharmacodynamic modelling. In the design of clinical studies, they are able to choose appropriate statistical tools and methods for sample size calculation and randomization. They are familiar with more advanced designs, issues of multiple testing and strategies to address intercurrent events and missing values in clinical studies.

Type of examination

Written exam or oral examination or term paper or exercise portfolio

Type of assessment

The successful completion of the module will be graded.

Requirements for the gain of ECTS credits

ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.

Responsible contact

Boulesteix

Language(s)

English

Additional information

None
Module: WP 3 Complex Samples and Data Structures

Programme

Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 3.1 Complex Samples and Data Structures (Lecture)</td>
<td>WiSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 3.2 Complex Samples and Data Structures (Exercise Course)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type

Compulsory elective module with mandatory courses

Usability of the module in other programmes

None

Elective guidelines

The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements

The requirements of the eligibility process for the master's degree in statistics and data science are expected.

Semester

Recommended semester: 1

Duration

The completion of the module takes 1 semester.

Content

The sample survey is a widely-used tool for describing populations, investigating social phenomena, and informing policy decisions. This course considers the process of selecting a random sample from the target population, with an emphasis on practical aspects of various sample designs. The course will introduce students to the basic principles of sampling that are commonly used in large-scale surveys. The course will cover several sample designs, including simple random sampling, systematic sampling, stratified sampling, cluster sampling, and multistage sampling, among others. The course will also provide an introduction to key elements of weighting for unequal probabilities of selection, differential non-response, and non-coverage. The course is structured around the following topics: simple random sampling, frames and frame problems, cluster sampling, stratified sampling, multistage sampling, telephone sampling, and weighting and variance estimation.

Learning outcomes

By the end of the course students will know the key terminology used in designing complex samples. They will
clearly understand the differences between various sampling designs and understand their advantages and disadvantages. Students will be able to assess how different sampling designs affect statistical analysis. Students will be able to apply appropriate variance estimation techniques to a variety of complex sample designs and evaluate the efficiency of those techniques. They will also have a clear understanding of the steps involved in designing complex samples in real-world settings.

<table>
<thead>
<tr>
<th>Type of examination</th>
<th>Written exam or oral examination or term paper or exercise portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of assessment</td>
<td>The successful completion of the module will be graded.</td>
</tr>
<tr>
<td>Requirements for the gain of</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>ECTS credits</td>
<td></td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Kreuter</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 4 Basic Concepts and Structures in Official Statistics, Dissemination and Privacy Protection

<table>
<thead>
<tr>
<th>Programme</th>
<th>Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)</th>
</tr>
</thead>
</table>

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 4.1 Basic Concepts and Structures in Official Statistics, Dissemination and Privacy Protection (Lecture)</td>
<td>WiSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 4.2 Basic Concepts and Structures in Official Statistics, Dissemination and Privacy Protection (Exercise Course)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type

Compulsory elective module with mandatory courses

Usability of the module in other programmes

None

Elective guidelines

The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements

The requirements of the eligibility process for the master’s degree in statistics and data science are expected.

Semester

Recommended semester: 1

Duration

The completion of the module takes 1 semester.

Content

Official statistics lay the groundwork for evidence-based decision processes for governments. In this course, participants will get to know the basic concepts and principles of official statistics in Germany and the European Union, including the business production model and the European Statistical System as a whole. Furthermore, the implications of new methodologies in the Big Data context, Smart Statistics and modern dissemination principles are discussed. The high quality standards within official statistics are detailed, with a special focus on the Code of Practice and privacy protection issues.
Learning outcomes
In this course, students will understand the basic structure and the fundamental questions of official statistics. They know how to approach statistical methodology and data with the high standards required by official statistics. This extends to critically reflecting data production processes and ethical standards in the context of data analysis.

Type of examination
Written exam or oral examination or term paper or exercise portfolio

Type of assessment
The successful completion of the module will be graded.

Requirements for the gain of ECTS credits
ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.

Responsible contact
Augustin

Language(s)
English

Additional information
The module plays an important role in the EMOS specialization.
Module: WP 5 Causal Inference

Programme
Master’s Programme: Statistics and Data Science
(Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 5.1 Causal Inference (Lecture)</td>
<td>WiSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 5.2 Causal Inference (Exercise Course)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
The requirements of the eligibility process for the master’s degree in statistics and data science are expected.

Semester
Recommended semester: 1

Duration
The completion of the module takes 1 semester.

Content
The module introduces into causal analysis, mainly from an econometric perspective. The specific situation of causal analysis is introduced, with an emphasis on counterfactuality and potential outcomes. Different aims of causal analysis are identified, and inference methods specifically adopted to them are discussed.

Learning outcomes
Students understand the principled differences of specific designs and are able to apply and extend specific methods. They are aware of the power and limitations of methods and designs for producing causal conclusions.

Type of examination
Written exam or oral examination or term paper or exercise portfolio

Type of assessment
The successful completion of the module will be graded.

Requirements for the gain of ECTS credits
ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly
compulsory elective module parts) has/have been completed successfully.

<table>
<thead>
<tr>
<th>Responsible contact</th>
<th>Wilhelm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 6 Survival Analysis

| Programme | Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.) |

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 6.1 Survival Analysis (Lecture)</td>
<td>WiSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 6.2 Survival Analysis (Exercise Course)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
The requirements of the eligibility process for the master's degree in statistics and data science are expected; in particular, suitable background knowledge is needed on concepts of statistical modelling and machine learning.

Semester
Recommended semester: 1

Duration
The completion of the module takes 1 semester.

Content
In this course different techniques for handling time-to-event data are presented. Such methods play an important role in different fields of application, particularly in biomedical applications (survival), but also sociology (e.g. length of marriage), industry (reliability, warranty) and production (predictive maintenance). The module begins with the introduction of basic quantities like hazard rates and survival functions (and their relationships) as well as different estimators for the distribution of event times under different types of censoring (left-, right-, and interval-censoring) and truncation (left- and right-truncation). In particular, different univariate, non-parametric techniques for right-censored and left-truncated data (life-table, Kaplan-Meier and Nelson-Aalen estimators) as well as parametric (accelerated failure time) and semi-parametric (Cox, piecewise exponential) models for the estimation of time-to-event outcomes are discussed. Students will also learn to deal with more advanced settings with recurrent events and competing risks. Additionally, the course will cover models...
for time-to-event outcomes on discrete time scales. Finally, some basic workflows for the application of machine learning techniques to time-to-event data will be covered.

Learning outcomes
Students will be able to identify the correct type of censoring and truncation present in different studies with time-to-event endpoints and choose an appropriate method for their analysis. In particular, students will be able to apply complex regression strategies to estimate baseline hazards as well as potentially time-varying effects of potentially time-dependent covariates. They will also be able to check the different assumptions of the models and modify models in order to relax these assumptions if necessary (in particular the proportional hazards assumption).

<table>
<thead>
<tr>
<th>Type of examination</th>
<th>Written exam or oral examination or term paper or exercise portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of assessment</td>
<td>The successful completion of the module will be graded.</td>
</tr>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Bischl</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: P 3 Statistical Inference

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>P 3.1 Statistical Inference (Lecture)</td>
<td>WiSe and SoSe</td>
<td>60 h (4 SWS)</td>
<td>120 h</td>
<td>(6)</td>
</tr>
<tr>
<td>Exercise</td>
<td>P 3.2 Statistical Inference (Exercise Course)</td>
<td>WiSe and SoSe</td>
<td>30 h (2 SWS)</td>
<td>60 h</td>
<td>(3)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 9 ECTS credits have to be acquired. Class attendance averages about 6 contact hours. Including time for self-study, 270 hours have to be invested.

Module type
Mandatory module with mandatory courses

Usability of the module in other programmes
Masterstudiengang Versicherungs- und Finanzmathematik

Elective guidelines
None

Entry requirements
The requirements of the eligibility process for the master's degree in statistics and data science are expected; in particular an appropriate background in probability theory, differential calculus (multivariate), integration, matrix calculus as well as in basics inference concepts is required.

Semester
Recommended semester: 2

Duration
The completion of the module takes 1 semester.

Content
In this course students will learn different estimation and inference techniques. As a starting point, the classical theory of point estimation and tests will be introduced, including important concepts such as loss function, risk function or multiple testing procedures.

Then, likelihood-based estimation of statistical models (multi-dimensional) is presented. Important tools such as the score function, Fisher information, asymptotic normality, variance bounds, confidence intervals and likelihood ratio tests are discussed.

Then, Bayesian (multi-dimensional) inference methods, including modern sampling approaches such as Gibbs sampling, or in general, Markov-Chain Monte Carlo
approaches, as well as variational Bayes and approximations such as the Laplace approximation, are presented.

Finally, the non-parametric and parametric bootstrap for estimating standard deviations, confidence intervals and statistical tests is discussed.

<table>
<thead>
<tr>
<th>Learning outcomes</th>
<th>Students will get knowledge of fundamental concepts of statistical inference and reasoning. They will understand important building blocks for statistical inference. Furthermore, they will be able to apply important tools for the estimation of parameters of statistical models and for the estimation of the distributions of estimates of these parameters. Furthermore, they will know the weaknesses and strengths of each approach.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of examination</td>
<td>Written exam or oral examination or term paper or exercise portfolio</td>
</tr>
<tr>
<td>Type of assessment</td>
<td>The successful completion of the module will be graded.</td>
</tr>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Heumann</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: P 4 Consulting

Programme
Master’s Programme: Statistics and Data Science
(Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>P 4.1 Introduction to Consulting</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>75 h</td>
<td>(3)</td>
</tr>
<tr>
<td>Seminar</td>
<td>P 4.2 Consulting Project</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>165 h</td>
<td>(6)</td>
</tr>
<tr>
<td>Seminar</td>
<td>P 4.3 Communication and Dissemination of Data Analyses</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>75 h</td>
<td>(3)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 12 ECTS credits have to be acquired. Class attendance averages about 3 contact hours. Including time for self-study, 360 hours have to be invested.

Module type
Mandatory module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
None

Entry requirements
Especially for the second part of the module, it is strongly recommended to have attended the compulsory modules of the previous semesters, in particular Statistical Modelling (P1), Supervised Learning (P2) and Statistical Inference (P3).

Semester
Recommended semester: 2 and 3

Duration
The completion of the module takes 2 semesters.

Content
Students work on real practical problems with external collaboration partners. The project partners are either (applied) scientists or external domain experts from industry and business. The projects are provided to the students but can also be proposed by the students themselves. The projects need to fulfil specific requirements such as e.g. a) data are available, b) the question is statistically challenging enough, c) the major task is not solely on software implementation. All projects need the formal approval of the responsible lecturer.

Learning outcomes
The students have developed the necessary communication skills to interact with the project partners. They know how to translate the natural language description of the problem
into appropriate statistical terms and methods (and vice versa). They performed suitable analyses and communicated the correctly interpreted results of their analysis both verbally and in writing. They have also gained the necessary technical expertise to make their data analysis reproducible.

<table>
<thead>
<tr>
<th>Type of examination</th>
<th>Presentation and term paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of assessment</td>
<td>The successful completion of the module will be graded.</td>
</tr>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Scheipl</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 7 Deep Learning

Programme
Master’s Programme: Statistics and Data Science
(Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
</table>
| Lecture | WP 7.1 Deep Learning
(Lecture) | SoSe | 45 h (3 SWS) | 75 h | (4) |
| Exercise | WP 7.2 Deep Learning
(Exercise Course) | SoSe | 15 h (1 SWS) | 45 h | (2) |

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

<table>
<thead>
<tr>
<th>Module type</th>
<th>Compulsory elective module with mandatory courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usability of the module in other programmes</td>
<td>None</td>
</tr>
<tr>
<td>Elective guidelines</td>
<td>The module can be chosen in compliance with the following rules: S. Appendix I</td>
</tr>
<tr>
<td>Entry requirements</td>
<td>The requirements of the eligibility process for the master's degree in statistics and data science are expected; in particular, suitable background knowledge is needed on concepts of statistical inference, statistical modelling, and machine learning, including basic optimization techniques.</td>
</tr>
<tr>
<td>Semester</td>
<td>Recommended semester: 2</td>
</tr>
<tr>
<td>Duration</td>
<td>The completion of the module takes 1 semester.</td>
</tr>
<tr>
<td>Content</td>
<td>The course will lay out a brief history of deep learning and subsequently introduces the basic structure of neural networks including their mathematical foundation. After discussing the extension of a single hidden layer network to more complex, deeper feedforward neural networks, their regularization is discussed and a detailed explanation of the different optimization routines for neural networks is given. A second larger part of the lecture and exercise course will introduce convolutional neural networks (CNNs). This includes properties and components of CNNs as well as different variations of convolution operations and an overview of modern CNN architectures. A third part of the course introduces recurrent neural networks (RNNs), their optimization, different architectures and applications of RNNs. After discussing modern approaches based on the attention mechanism and transformers, we turn to different types of autoencoders, variational autoencoders, and</td>
</tr>
</tbody>
</table>
generative adversarial networks as well as evaluation of generative models.

<table>
<thead>
<tr>
<th>Learning outcomes</th>
<th>The students understand the basic principles of deep learning, their optimization and the functionality of prominent architectures including CNNs, RNNs, AE, and Generative Models. They are able to formulate, implement and train appropriate architectures for practical use cases.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of examination</td>
<td>Written exam or oral examination or term paper or exercise portfolio</td>
</tr>
<tr>
<td>Type of assessment</td>
<td>The successful completion of the module will be graded.</td>
</tr>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Bischl</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 8 Advanced Machine Learning

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 8.1 Advanced Machine Learning (Lecture)</td>
<td>SoSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 8.2 Advanced Machine Learning (Exercise Course)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
It is strongly recommended to have attended the compulsory modules of the previous semester, in particular Supervised Learning (P2) and Optimization (WP1).

Semester
Recommended semester: 2

Duration
The completion of the module takes 1 semester.

Content
The course directly builds on the “Supervised Learning” lecture and introduces advanced machine learning concepts for some selected topics that were not covered in the “Supervised Learning” lecture, such as imbalanced, multi-label or cost-sensitive classification, feature engineering, advanced hyperparameter tuning approaches, performance estimation and calibration techniques, uncertainty quantification, fairness, interpretability and other related concepts. The course will also touch extensions and recent developments for some ML algorithms (e.g., for trees, forests, boosting) as well as for advanced ensemble methods.

Learning outcomes
At the completion of this module, students will have a profound understanding of concepts and current trends in selected advanced machine learning topics that go beyond the basics.
<table>
<thead>
<tr>
<th>Type of examination</th>
<th>Written exam or oral examination or term paper or exercise portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of assessment</td>
<td>The successful completion of the module will be graded.</td>
</tr>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Bischl</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>

Module: WP 9 Applied Machine Learning

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 9.1 Applied Machine Learning (Lecture)</td>
<td>SoSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 9.2 Applied Machine Learning (Exercise Course)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
It is strongly recommended to have attended the compulsory modules of the previous semester, in particular Supervised Learning (P2) as well as modules on programming skills in R or Python.

Sound theoretical knowledge of different methods of supervised learning such as principles of risk minimization, hyperparameter tuning and different learners such as random forests and SVMs are need. Furthermore, good programming skills in R or Python are expected.

Semester
Recommended semester: 2

Duration
The completion of the module takes 1 semester.

Content
This course applies the theoretical concepts of the previous courses in machine learning to practical problems. The focus is (a) on the implementation of the previously learned methods with current tool kits and (b) on practical pitfalls and how to cope with them.

Learning outcomes
Students will have the practical skills to work on advanced practical problems of supervised machine learning through their gained experience in implementing analyses and through their sound understanding of practical pitfalls.
<table>
<thead>
<tr>
<th>Type of examination</th>
<th>Written exam or oral examination or term paper or exercise portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of assessment</td>
<td>The successful completion of the module will be graded.</td>
</tr>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Bischl</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 10 Diagnostic Accuracy Studies

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 10.1 Diagnostic Accuracy Studies (Lecture)</td>
<td>SoSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 10.2 Diagnostic Accuracy Studies (Exercise Course)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
The requirements of the eligibility process for the master's degree in statistics and data science are expected; in particular, suitable background knowledge is needed on concepts of statistical modelling and machine learning.

Semester
Recommended semester: 2

Duration
The completion of the module takes 1 semester.

Content
The course covers the most important aspects in the design, analysis and interpretation of diagnostic accuracy studies.

The first part of the course starts by introducing basic concepts including sensitivity, specificity, predictive values, diagnostic likelihood ratios and receiver operating characteristic curves and statistical techniques to estimate these quantities. It also discusses more advanced topics including for instance imperfect reference tests, verification bias, sample size calculation and meta-analysis of diagnostic accuracy studies.

The second part of the lecture takes a broader view on the topic by discussing important issues that are related to diagnostic accuracy, including for instance the design and evaluation of clinical prediction models for the diagnosis and prognosis of disease and more general concepts and methods that allow to describe and account for the accuracy...
of the collected variables in the modelling of communicable and non-communicable disease.

<table>
<thead>
<tr>
<th>Learning outcomes</th>
<th>At the completion of the course, students are familiar with the most important concepts and methods to describe and analyze diagnostic accuracy studies. They are aware of challenges and pitfalls in the design, analysis and interpretation of these studies and they are able to choose adequate statistical methods that allow them to address these issues.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of examination</td>
<td>Written exam or oral examination or term paper or exercise portfolio</td>
</tr>
<tr>
<td>Type of assessment</td>
<td>The successful completion of the module will be graded.</td>
</tr>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Boulesteix</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 11 Selected Topics of Biostatistics

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 11.1 Selected Topics of Biostatistics (Lecture)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>15 h</td>
<td>(1)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 11.2 Selected Topics of Biostatistics (Exercise Course)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 3 ECTS credits have to be acquired. Class attendance averages about 2 contact hours. Including time for self-study, 90 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
It is strongly recommended to have attended the compulsory modules of the previous semester.

Semester
Recommended semester: 2

Duration
The completion of the module takes 1 semester.

Content
The lecture provides an insight into new statistical methods in Biostatistics and procedures in established or new application areas.

The exercise class will deepen the understanding of the concepts discussed in the lecture and enable students to apply the methods and techniques learned in the lecture.

Learning outcomes
At the completion of the course, students are familiar with selected methods and results of current research.

Type of examination
Written exam or oral examination or term paper or exercise portfolio

Type of assessment
The successful completion of the module will be graded.

Requirements for the gain of ECTS credits
ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.
<table>
<thead>
<tr>
<th>Responsible contact</th>
<th>Boulesteix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 12 Analysis of High-dimensional Biological Data

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 12.1 Analysis of High-dimensional Biological Data (Lecture)</td>
<td>SoSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 12.2 Analysis of High-dimensional Biological Data (Exercise Course)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
It is strongly recommended to have attended the compulsory modules of the previous semester.

Semester
Recommended semester: 2

Duration
The completion of the module takes 1 semester.

Content
The module gives an overview of analysis of high-dimensional data, in particular from a computational biology angle. First, classical methods like cluster and factor analysis are extended to cope with large biological data sets. In the second part, different computer-intensive methods are introduced that are able to handle the p>>n situations typical for genomic data. The range from adopted machine learning methods to certain ensembled methods directly developed for cell data.

Learning outcomes
The students have a systematic overview of different methods to analyze high dimensional data. They have a critical understanding of their power and their specific limitations.

Type of examination
Written exam or oral examination or term paper or exercise portfolio
<table>
<thead>
<tr>
<th>Type of assessment</th>
<th>The successful completion of the module will be graded.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Müller</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 13 Introduction to Medical Terminology

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 13.1 Introduction to Medical Terminology (Lecture)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>15 h</td>
<td>(1)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 13.2 Introduction to Medical Terminology (Exercise Course)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 3 ECTS credits have to be acquired. Class attendance averages about 2 contact hours. Including time for self-study, 90 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
None

Semester
Recommended semester: 2

Duration
The completion of the module takes 1 semester.

Content
The module introduces the students to basic terminology in different fields of medical practice and related fields like epidemiology. The students learn basic principles of classification schemes for diseases and characteristic elements of doctors’ professional language.

Learning outcomes
The students get some familiarity with medical terminology and professional language. This improves their communication skills in interdisciplinary projects from medicine and biostatistics, in particular their ability to operationalize and formalize medical questions into statistical models.

Type of examination
Written exam or oral examination or term paper or exercise portfolio

Type of assessment
The successful completion of the module will be graded.

Requirements for the gain of ECTS credits
ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly
compulsory elective module parts) has/have been completed successfully.

<table>
<thead>
<tr>
<th>Responsible contact</th>
<th>Dean of Studies (currently: Augustin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 14 Data Collection and Questionnaire Design

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 14.1 Data Collection and Questionnaire Design (Lecture)</td>
<td>SoSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 14.2 Data Collection and Questionnaire Design (Exercise Course)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
The requirements of the eligibility process for the master's degree in statistics and data science are expected.

Semester
Recommended semester: 2

Duration
The completion of the module takes 1 semester.

Content
The social survey is a research tool of fundamental importance across a range of disciplines and is widely used in applied research and as evidence to inform policy making. This course considers the process of conducting a survey, with an emphasis on practical aspects of survey design and implementation, as well as factors that influence the quality of survey data. The course will also cover key statistical concepts and procedures in sample design and estimation. The course is structured around the following topics: Introduction of the Total Survey Error framework, questionnaire design, pretesting and fieldwork, alternative modes of data collection, survey sampling, and post-survey processing and estimation.

Learning outcomes
By the end of the course students will be able to apply the key terminology used in large-scale survey design. They will understand factors that influence data quality, including coverage, sampling, and nonresponse and be able to evaluate different survey methods and sampling techniques. In addition, students will be able to identify methods for
assessing the quality of survey data and have a clear understanding of the steps involved in designing and planning a survey.

<table>
<thead>
<tr>
<th>Type of examination</th>
<th>Written exam or oral examination or term paper or exercise portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of assessment</td>
<td>The successful completion of the module will be graded.</td>
</tr>
<tr>
<td>Requirements for the gain of</td>
<td>ECTS credits will be granted when the module examination (or the</td>
</tr>
<tr>
<td>ECTS credits</td>
<td>examination of relevant mandatory and possibly compulsory elective</td>
</tr>
<tr>
<td></td>
<td>module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Kreuter</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 15 Official Statistics on Households, Enterprises, Economies and Populations

| Programme | Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.) |

| Related module parts | |

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 15.1 Official Statistics on Households, Enterprises, Economies and Populations (Lecture)</td>
<td>SoSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 15.2 Official Statistics on Households, Enterprises, Economies and Populations (Exercise Course)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

| Module type | Compulsory elective module with mandatory courses |

| Usability of the module in other programmes | None |

| Elective guidelines | The module can be chosen in compliance with the following rules: S. Appendix I |

| Entry requirements | The requirements of the eligibility process for the master’s degree in statistics and data science are expected. |

| Semester | Recommended semester: 2 |

| Duration | The completion of the module takes 1 semester. |

Content	This course first reflects on official statistics about social matters like income, living conditions, poverty measures, and unemployment. Hereby, a focus is put on the measurement of social and abstract constructs. Later, the most important voluntary and compulsory surveys conducted by official statistics are discussed, as well as recent developments in the area of processed produced external data and so-called smart statistics. Then, the module turns to business statistics with respect to national accounts, terms of trade, and indicators of economic development. Furthermore, demographic models are examined.
Learning outcomes	After this course students will know the benefits as well as the difficulties trying to quantify social constructs. They are familiar with the major surveys in official statistics, their specific characteristics and their special quality standards. They understand the specific requirements as well as methodological opportunities and challenges of new data sources.
Type of examination	Written exam or oral examination or term paper or exercise portfolio
Type of assessment	The successful completion of the module will be graded.
Requirements for the gain of ECTS credits	ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.
Responsible contact	Augustin
Language(s)	English
Additional information	The module plays an important role in the EMOS specialization.
Module: WP 16 Advanced Methods in Social Statistics and Social Data Science

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 16.1 Advanced Methods in Social Statistics and Social Data Science (Lecture)</td>
<td>SoSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 16.2 Advanced Methods in Social Statistics and Social Data Science (Exercise Course)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
It is strongly recommended to have attended the compulsory modules of the previous semester.

Semester
Recommended semester: 2

Duration
The completion of the module takes 1 semester.

Content
The increasing availability of digital data sources has led to an explosion of new research and data collection avenues in social science and social statistics. This is paralleled by an increasing use of techniques from the field of machine learning to process unstructured and heterogeneous digital data. This module reflects on current trends in social statistics and discusses advantages and limitations of state-of-the-art social data science methodology. Key aspects include questions of accountability, fairness and privacy in the context of automated processing of digital data sources.

Learning outcomes
At the completion of this module, students will have a profound understanding of current trends in social statistics and social data science. Students will learn how to critically reflect on the use of digital data sources and new processing
avenues and will apply state-of-the-art methodology in practice.

<table>
<thead>
<tr>
<th>Type of examination</th>
<th>Written exam or oral examination or term paper or exercise portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of assessment</td>
<td>The successful completion of the module will be graded.</td>
</tr>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Kreuter</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 17 Econometric Theory

| Programme | Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.) |

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 17.1 Econometric Theory (Lecture)</td>
<td>SoSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 17.2 Econometric Theory (Exercise Course)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

<table>
<thead>
<tr>
<th>Module type</th>
<th>Compulsory elective module with mandatory courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usability of the module in other programmes</td>
<td>None</td>
</tr>
<tr>
<td>Elective guidelines</td>
<td>The module can be chosen in compliance with the following rules: S. Appendix I</td>
</tr>
<tr>
<td>Entry requirements</td>
<td>The requirements of the eligibility process for the master's degree in statistics and data science are expected; in particular, suitable background knowledge is needed on concepts of statistical modelling and on statistical inference.</td>
</tr>
<tr>
<td>Semester</td>
<td>Recommended semester: 2</td>
</tr>
<tr>
<td>Duration</td>
<td>The completion of the module takes 1 semester.</td>
</tr>
<tr>
<td>Content</td>
<td>The module gives an overview of modern econometric theory and its central modelling techniques. Methods for asymptotic inference in interdependent or dynamic structural systems are introduced and compared. Another focus is on econometric analysis of latent structures, ranging from choices models to models explicitly taking into account measurement error or misclassifications.</td>
</tr>
<tr>
<td>Learning outcomes</td>
<td>Students have a good overview of fundamental questions and techniques in econometric theory. They understand the power of the different methods, their technical requirements and their limitations. They know to handle situations with latent variables.</td>
</tr>
<tr>
<td>Type of examination</td>
<td>Written exam or oral examination or term paper or exercise portfolio</td>
</tr>
<tr>
<td>Type of assessment</td>
<td>The successful completion of the module will be graded.</td>
</tr>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Wilhelm</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 18 Time Series

Programme

Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 18.1 Time Series (Lecture)</td>
<td>SoSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 18.2 Time Series (Exercise Course)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type

Compulsory elective module with mandatory courses

Usability of the module in other programmes

None

Elective guidelines

The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements

The requirements of the eligibility process for the master's degree in statistics and data science are expected; in particular, suitable background knowledge is needed on concepts of statistical modelling.

Semester

Recommended semester: 2

Duration

The completion of the module takes 1 semester.

Content

This course introduces the concept of time series in both theoretical and applied frameworks. At the beginning, time series as a discrete version of certain continuous stochastic processes are presented. The discussion is supplemented with practical examples using economic figures such as GDP, industrial production indices or financial figures such as stock prices. Decompositions of time series are discussed, and filtering methods are introduced. This course is focused on linear time series models, in particular ARIMA. A major part of the course will be to investigate this class of models in terms of estimation, prediction and especially the statistical significance of the results gained from the analysis. Finally, some heteroscedasticity models are presented, namely ARCH and GARCH models with respect to financial time series.

Learning outcomes

The students are able to apply time series methods to analyze data with a time domain. They are able to use the ARIMA and (G)ARCH class of models to investigate economic and financial data, that is, estimate the model, test
the significance of their results and use that model for prediction.

<table>
<thead>
<tr>
<th>Type of examination</th>
<th>Written exam or oral examination or term paper or exercise portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of assessment</td>
<td>The successful completion of the module will be graded.</td>
</tr>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Dean of Studies (currently: Augustin)</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 19 Machine Learning in Econometrics

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 19.1 Machine Learning in Econometrics (Lecture)</td>
<td>SoSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 19.2 Machine Learning in Econometrics (Exercise Course)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
The requirements of the eligibility process for the master's degree in statistics and data science are expected; in particular, suitable background knowledge is needed on concepts of statistical modelling and machine learning.

Semester
Recommended semester: 2

Duration
The completion of the module takes 1 semester.

Content
The course will give an overview of modern machine learning techniques in econometrics. Special attention will be paid to methods that address complex nonstandard data structures arising from specified econometric questions, like paired comparison data.

Learning outcomes
Students have an overview of machine learning methods applied to econometric questions. They are aware of specific methods for certain complex econometric data structures, their specific technical requirements and their limitations.

Type of examination
Written exam or oral examination or term paper or exercise portfolio

Type of assessment
The successful completion of the module will be graded.
<table>
<thead>
<tr>
<th>Requirements for the gain of ECTS credits</th>
<th>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsible contact</td>
<td>Wilhelm</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 20 Selected Topics of Econometrics

Programme

Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 20.1 Selected Topics of Econometrics (Lecture)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>15 h</td>
<td>(1)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 20.2 Selected Topics of Econometrics (Exercise Course)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 3 ECTS credits have to be acquired. Class attendance averages about 2 contact hours. Including time for self-study, 90 hours have to be invested.

Module type

Compulsory elective module with mandatory courses

Usability of the module in other programmes

None

Elective guidelines

The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements

It is strongly recommended to have attended the compulsory modules of the previous semester.

Semester

Recommended semester: 2

Duration

The completion of the module takes 1 semester.

Content

The module focuses on specific research questions of current econometric research literature.

Learning outcomes

Students gain exemplary insights in current research. They understand the interplay between specific econometric questions and corresponding methodological developments.

Type of examination

Written exam or oral examination or term paper or exercise portfolio

Type of assessment

The successful completion of the module will be graded.

Requirements for the gain of ECTS credits

ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.

Responsible contact

Wilhelm

Language(s)

English
Additional information

None
Module: WP 21 Regression for Correlated Data

Programme

Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 21.1 Regression for Correlated Data (Lecture)</td>
<td>SoSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 21.2 Regression for Correlated Data (Exercise Course)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type

Compulsory elective module with mandatory courses

Usability of the module in other programmes

None

Elective guidelines

The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements

The requirements of the eligibility process for the master's degree in statistics and data science are expected; in particular suitable background knowledge is needed on concepts of statistical modelling and machine learning. In addition, basic proficiency in R (scripted analyses, data visualization) is required.

Semester

Recommended semester: 2

Duration

The completion of the module takes 1 semester.

Content

This course focuses on the theory and applications of flexible regression models for outcomes with known dependency structures, i.e., longitudinal, spatial or spatio-temporal, hierarchically grouped and functional data. Exercises and case studies on model choice, model diagnostics, inference and interpretation of models for correlated data and comparisons of their various R implementations serve as the applied basis for a theoretical perspective that focuses on commonalities between regularized empirical risk minimization, penalized maximum likelihood inference, Bayesian inference with informative prior hierarchies and (latent) Gaussian process methods.

Learning outcomes

Students will be able to perform, critically evaluate and correctly interpret (non-linear) regression models for
correlated data and to implement the analysis in R. They will appreciate the various trade-offs between the different available methodologies and their software implementations for this model class and the extent (or lack) of theoretical guarantees for the corresponding estimates. They will also recognize the fundamental structural overlap between the different formulations of the basic problem as it appears from the perspectives of empirical risk minimization likelihood inference, Bayesian inference and Gaussian processes.

<table>
<thead>
<tr>
<th>Type of examination</th>
<th>Written exam or oral examination or term paper or exercise portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of assessment</td>
<td>The successful completion of the module will be graded.</td>
</tr>
<tr>
<td>Requirements for the gain of</td>
<td>ECTS credits will be granted when the module examination (or the</td>
</tr>
<tr>
<td>ECTS credits</td>
<td>examination of relevant mandatory and possibly compulsory elective</td>
</tr>
<tr>
<td></td>
<td>module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Scheipl</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 22 Decision Theory

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 22.1 Decision Theory (Lecture)</td>
<td>SoSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 22.2 Decision Theory (Exercise Course)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
The requirements of the eligibility process for the master’s degree in statistics and data science are expected.

Semester
Recommended semester: 2

Duration
The completion of the module takes 1 semester.

Content
The course develops concepts and paradigmatic ideas of decision theory as the theory of rational behavior under uncertainty. After introducing the fundamental notions (actions/decision functions, states, utility/loss/risk functions, randomization), the standard estimation and testing problems are embedded as special cases into the decision theoretic framework. Then fundamental decision principles (most notably admissibility) and classical decision criteria (including the Bayes and minimax criterion) are investigated and related to different types of uncertainty. Finally, an overview of modern developments in the area of decision making under ambiguity is given.

Learning outcomes
The students are familiar with the most important decision theoretic notions. They are able to utilize the generality of the framework for a deeper understanding and critical evaluation of statistical methods.

Type of examination
Written exam or oral examination or term paper or exercise portfolio
<table>
<thead>
<tr>
<th>Type of assessment</th>
<th>The successful completion of the module will be graded.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Augustin</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 23 Methodological Discourses in Statistics and Data Science

Programme

Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 23.1 Methodological Discourses in Statistics and Data Science (Lecture)</td>
<td>SoSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 23.2 Methodological Discourses in Statistics and Data Science (Exercise Course)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type

Compulsory elective module with mandatory courses

Usability of the module in other programmes

None

Elective guidelines

The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements

The requirements of the eligibility process for the master’s degree in statistics and data science are expected; in particular, suitable background knowledge is needed on concepts of statistical inference and machine learning.

Semester

Recommended semester: 2

Duration

The completion of the module takes 1 semester.

Content

The module introduces current and classical methodological discourses in statistics, machine learning and data science. First different conceptualizations and formalizations of uncertainty are discussed. Then different data analytical and inferential paradigms are investigated.

Learning outcomes

The students are familiar with the major paradigmatic positions towards learning from data and are able to discuss and evaluate current methodological developments against this background.

Type of examination

Written exam or oral examination or term paper or exercise portfolio

Type of assessment

The successful completion of the module will be graded.
<table>
<thead>
<tr>
<th>Requirements for the gain of ECTS credits</th>
<th>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsible contact</td>
<td>Dean of Studies (currently: Augustin)</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 24 Design of Experiments

Programme

Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 24.1 Design of Experiments (Lecture)</td>
<td>SoSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 24.2 Design of Experiments (Exercise Course)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type

Compulsory elective module with mandatory courses

Usability of the module in other programmes

None

Elective guidelines

The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements

The requirements of the eligibility process for the master’s degree in statistics and data science are expected; in particular suitable background knowledge is needed on concepts of statistical modelling.

Semester

Recommended semester: 2

Duration

The completion of the module takes 1 semester.

Content

The module introduces the main principles of design of experiments. It starts with simple experiments including randomization and the subsequent analysis of the data using analysis of variance (ANOVA). The content then proceeds towards more complex designs like block-design, factorial design and fractional designs. Repeated measurements as well as latin squares are discussed as well. The module continues with a general discussion on causality and links ideas from design of experiments to settings with observational data. Wherever possible, the material of the course is accompanied by small practicals.

Learning outcomes

The students know why and when experiments are required and how these should be designed. They are aware of classical analysis tools and can extend the ideas to questions of causality.
<table>
<thead>
<tr>
<th>Type of examination</th>
<th>Written exam or oral examination or term paper or exercise portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of assessment</td>
<td>The successful completion of the module will be graded.</td>
</tr>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Kauermann</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 25 Advanced Mathematical Concepts for Statistics and Data Science

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 25.1 Advanced Mathematical Concepts for Statistics and Data Science (Lecture)</td>
<td>SoSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 25.2 Advanced Mathematical Concepts for Statistics and Data Science (Exercise Course)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
The requirements of the eligibility process for the master’s degree in statistics and data science are expected; in particular, it is strongly recommended to have a strong background in calculus and linear algebra, including basic proof techniques.

Semester
Recommended semester: 2

Duration
The completion of the module takes 1 semester.

Content
The course gives a deeper exemplary insight into mathematical concepts in statistics and data science. In particular, methods at the intersection of classical mathematical subdisciplines (like measure theory, order and lattice theory, numerical optimization, dynamical systems, functional analysis, and financial mathematics) and statistics and data science are investigated.

Learning outcomes
The students deepen their mathematical knowledge in neighboring fields. They understand the mathematical background behind certain modern statistical methods.
<table>
<thead>
<tr>
<th>Type of examination</th>
<th>Written exam or oral examination or term paper or exercise portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of assessment</td>
<td>The successful completion of the module will be graded.</td>
</tr>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Dean of Studies (currently Augustin)</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 26 Stochastic Processes

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 26.1 Stochastic Processes (Lecture)</td>
<td>SoSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>4</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 26.2 Stochastic Processes (Exercise Course)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>2</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None.

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
The requirements of the eligibility process for the master's degree in statistics and data science are expected; in particular, suitable background knowledge is needed on concepts of statistical modelling and calculus.

Semester
Recommended semester: 2

Duration
The completion of the module takes 1 semester.

Content
The lecture gives a short introduction into the theory of stochastic processes. Following this, different classes of stochastic processes, their applications and methods for statistical inference are discussed. The topics of the course include, but are not limited to, Markov chains, Markov processes, semi-Markov processes, and renewal processes.

The exercises will deepen the theoretical concepts and students will be enabled to apply stochastic processes.

Learning outcomes
At the end of the course, the students will have a basic understanding of the theory of stochastic processes and their application to correlated data, especially data correlated in time.

Type of examination
Written exam or oral examination or term paper or exercise portfolio
<table>
<thead>
<tr>
<th>Type of assessment</th>
<th>The successful completion of the module will be graded.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Schmid</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 27 Teaching Statistics and Data Science

Programme
Master’s Programme: Statistics and Data Science
(Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 27.1 Didactical Tools in Statistics and Data Science</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
<tr>
<td>Seminar</td>
<td>WP 27.2 Teaching Project</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>105 h</td>
<td>(4)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 2 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
The requirements of the eligibility process for the master's degree in statistics and data science are expected.

Semester
Recommended semester: 2

Duration
The completion of the module takes 1 semester.

Content
The module supports students giving a tutorial by some background on teaching in general and from mathematical didactics in particular. A special focus is first laid on methods to motivate students in tutorials to participate and learn actively. Secondly, tools to help students from other faculties to overcome reservations, and indeed often anxiety, with respect to mathematics and statistics are discussed. Finally, the exchange among the tutors is intensified by discussing their current teaching experiences.

Learning outcomes
Students giving a tutorial learn to reflect on their own teaching experiences. They have learned and practiced methods and tool to improve their teaching

Type of examination
Presentation or term paper

Type of assessment
The successful completion of the module will be graded.

Requirements for the gain of ECTS credits
ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly
compulsory elective module parts) has/have been completed successfully.

<table>
<thead>
<tr>
<th>Responsible contact</th>
<th>Augustin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 28 Statistical Literacy

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 28.1 Statistical Literacy</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>15 h</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>(Lecture)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 28.2 Statistical Literacy</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>(Exercise Course)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For successful completion of the module, 3 ECTS credits have to be acquired. Class attendance averages about 2 contact hours. Including time for self-study, 90 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
It is strongly recommended to have attended the compulsory modules of the previous semester.

Semester
Recommended semester: 2

Duration
The completion of the module takes 1 semester.

Content
This course reflects on the importance of statistical literacy and the communication abilities of statisticians for modern society. This ranges from basic communication skills about statistical terms like uncertainty or probability in the public over activities to increase statistical literacy in society to special techniques for the dissemination of research results.

Learning outcomes
The students are aware of the crucial importance of statistical literacy for a modern society. They are able to communicate and publish in a way understandable to non-statisticians, and they are familiar with techniques to increase statistical literacy in society.

Type of examination
Written exam or oral examination or term paper or exercise portfolio

Type of assessment
The successful completion of the module will be graded.

Requirements for the gain of ECTS credits
ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly
compulsory elective module parts) has/have been completed successfully.

<table>
<thead>
<tr>
<th>Responsible contact</th>
<th>Augustin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 29 Selected Topics of Applied Statistics

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 29.1 Selected Topics of Applied Statistics (Lecture)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>15 h</td>
<td>(1)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 29.2 Selected Topics of Applied Statistics (Exercise Course)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 3 ECTS credits have to be acquired. Class attendance averages about 2 contact hours. Including time for self-study, 90 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
The requirements of the eligibility process for the master's degree in statistics and data science are expected; in particular, suitable background knowledge is needed on concepts of statistical modelling and machine learning.

Semester
Recommended semester: 2

Duration
The completion of the module takes 1 semester.

Content
The lecture provides an insight into new statistical methods and procedures in established or new application areas.

The exercise class will deepen the understanding of the concepts discussed in the lecture and enable students to apply the methods and techniques learned in the lecture.

Learning outcomes
At the end of the course, students have an exemplary insight into selected methods and results of current research.

Type of examination
Written exam or oral examination or term paper or exercise portfolio

Type of assessment
The successful completion of the module will be graded.

Requirements for the gain of ECTS credits
ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly
compulsory elective module parts) has/have been completed successfully.

<table>
<thead>
<tr>
<th>Responsible contact</th>
<th>Dean of Studies (currently Augustin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 30 Selected Software for Applied Statistics

Programme

Master’s Programme: Statistics and Data Science
(Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 30.1 Selected Software for Applied Statistics (Lecture)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>15 h</td>
<td>(1)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 30.2 Selected Software for Applied Statistics (Exercise Course)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 3 ECTS credits have to be acquired. Class attendance averages about 2 contact hours. Including time for self-study, 90 hours have to be invested.

Module type

Compulsory elective module with mandatory courses

Usability of the module in other programmes

None

Elective guidelines

The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements

The requirements of the eligibility process for the master's degree in statistics and data science are expected; in particular, suitable background knowledge is needed on concepts of statistical modelling and machine learning. Moreover, basic proficiency with statistical software is required.

Semester

Recommended semester: 2

Duration

The completion of the module takes 1 semester.

Content

The lecture provides insights into state of the art software packages for statistical applications from methodological, software-engineering and applied perspectives.

The exercise class will use case studies and programming tasks to deepen the understanding gained through the lecture and enable students to apply complex software for challenging data analyses.

Learning outcomes

Students become proficient in the implementation details, the user interface and the scope of application of state of the art software packages for statistical applications and obtain basic programming proficiency in a relevant programming language.
<table>
<thead>
<tr>
<th>Type of examination</th>
<th>Written exam or oral examination or term paper or exercise portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of assessment</td>
<td>The successful completion of the module will be graded.</td>
</tr>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Scheipl</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 31 Advanced Research Methods in Applied Statistics

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>WP 31.1 Discussion of Current Research in Applied Statistics</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>75 h</td>
<td>(3)</td>
</tr>
<tr>
<td>Seminar</td>
<td>WP 31.2 Research Project in Applied Statistics</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>165 h</td>
<td>(6)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 9 ECTS credits have to be acquired. Class attendance averages about 2 contact hours. Including time for self-study, 270 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
It is strongly recommended to have attended the compulsory modules of the previous semester.

Semester
Recommended semester: 2

Duration
The completion of the module takes 1 semester.

Content
The module focuses on a current specified research topic in applied statistics.

Learning outcomes
Students gain an in-depth insight into special research areas of applied statistics and practice dealing with scientific working methods. The ability to deal with current research literature as well as its presentation and discussion will be deepened.

Type of examination
Presentation and term paper

Type of assessment
The successful completion of the module will be graded.

Requirements for the gain of ECTS credits
ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.
<table>
<thead>
<tr>
<th>Responsible contact</th>
<th>Dean of Studies (Augustin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 32 Current Research in Machine Learning

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 32.1 Current Research in Machine Learning (Lecture)</td>
<td>WiSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 32.2 Current Research in Machine Learning (Exercise Course)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
It is strongly recommended to have attended the compulsory modules of the previous semesters, in particular Supervised Learning (P2).

Semester
Recommended semester: 3

Duration
The completion of the module takes 1 semester.

Content
The lecture provides a broad overview on currently relevant research methods from the fields of machine learning and deep learning.

The exercise class will deepen the understanding of the machine learning concepts discussed in the lecture and enable students to apply the methods and techniques learned in the lecture.

Learning outcomes
Students are familiar with selected methods of current machine learning research. They are aware of the current state of the art in the discussed fields and are able to understand and assess relevant research papers.

Type of examination
Written exam or oral examination or term paper or exercise portfolio

Type of assessment
The successful completion of the module will be graded.
Requirements for the gain of ECTS credits

ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.

Responsible contact

Bischl

Language(s)

English

Additional information

None
Module: WP 33 Automated Machine Learning

Programme: Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 33.1 Automated Machine Learning (Lecture)</td>
<td>WiSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 33.2 Automated Machine Learning (Exercise Course)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type: Compulsory elective module with mandatory courses

Usability of the module in other programmes: None

Elective guidelines: The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements: It is strongly recommended to have attended the compulsory / specialization specifically recommended modules of the previous semesters, in particular Supervised Learning (P2) and Deep Learning (WP 7).

Semester: Recommended semester: 3

Duration: The completion of the module takes 1 semester.

Content: The module addresses the challenge of designing well-performing machine learning pipelines, including their hyperparameters, architectures of deep neural networks and pre-processing. Students will learn how to use and design automated approaches for determining such machine learning efficiently. Some important concepts are hyperparameter optimization, where the hyperparameter settings of a given machine learning algorithm are optimized to achieve great performance on a given dataset, neural architecture search, where the architecture of a neural network is tuned for its predictive performance (or in addition inference time or model size) on a given dataset, AutoML optimizers, concerned with approaches such as Bayesian optimization, evolutionary algorithms, multi-fidelity optimization and gradient-based optimization, and Dynamic & Meta-Learning, where useful meta strategies for speeding up the learning itself or AutoML are learned across datasets.
Learning outcomes
The students are able to identify possible design decisions and procedures in the application of ML. They know how to evaluate the design decisions for AutoML systems and to implement efficient optimizers for AutoML problems, such as hyperparameter optimization and neural architecture search. Finally, they have learned to increase the efficiency of AutoML via a multitude of different approaches.

Type of examination
Written exam or oral examination or term paper or exercise portfolio

Type of assessment
The successful completion of the module will be graded.

Requirements for the gain of ECTS credits
ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.

Responsible contact
Bischl

Language(s)
English

Additional information
None
Module: WP 34 Selected Topics of Machine Learning

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 34.1 Selected Topics of Machine Learning (Lecture)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>15 h</td>
<td>(1)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 34.2 Selected Topics of Machine Learning (Exercise Course)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 3 ECTS credits have to be acquired. Class attendance averages about 2 contact hours. Including time for self-study, 90 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
It is strongly recommended to have attended the compulsory modules of the previous semesters, in particular Supervised Learning (P2).

Semester
Recommended semester: 3

Duration
The completion of the module takes 1 semester.

Content
The lecture provides an insight into new methods from the fields of machine learning and deep learning as well as procedures in established or new application areas.

The exercise class will deepen the understanding of the machine learning concepts discussed in the lecture and enable students to apply the methods and techniques learned in the lecture.

Learning outcomes
Students have an exemplary deeper insight into selected machine learning and deep learning methods and results of current research.

Type of examination
Written exam or oral examination or term paper or exercise portfolio

Type of assessment
The successful completion of the module will be graded.
<table>
<thead>
<tr>
<th>Requirements for the gain of ECTS credits</th>
<th>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsible contact</td>
<td>Bischl</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 35 Statistical Methods in Epidemiology

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 35.1 Statistical Methods in Epidemiology (Lecture)</td>
<td>WiSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 35.2 Statistical Methods in Epidemiology (Exercise Course)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
It is strongly recommended to have attended the compulsory modules of the previous semesters.

Semester
Recommended semester: 3

Duration
The completion of the module takes 1 semester.

Content
The course covers the most important methodological issues in the design, analysis and interpretation of epidemiological studies.

The first part introduces key concepts in the modelling of communicable and non-communicable disease including the prevalence and the incidence of a disease and effect measures to describe the association between an exposure and an outcome variable of interest. It also addresses challenges and biases arising in the analysis of observational studies and critically discusses how different study designs and statistical techniques can address measured and unmeasured confounding in epidemiological studies.

The second part treats more advanced topics. These include for instance the most important concepts and methods of causal inference and Bayesian methods for the analysis of communicable and non-communicable disease.
<table>
<thead>
<tr>
<th>Learning outcomes</th>
<th>Students understand the main challenges and pitfalls arising in the design, analysis and interpretation of epidemiological studies. They are familiar with different study design and statistical methods to address these challenges and are able to choose an appropriate design and method for a given research question of interest.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of examination</td>
<td>Written exam or oral examination or term paper or exercise portfolio</td>
</tr>
<tr>
<td>Type of assessment</td>
<td>The successful completion of the module will be graded.</td>
</tr>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Boulesteix</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 36 Advanced Methods in Biostatistics

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 36.1 Advanced Methods in Biostatistics (Lecture)</td>
<td>WiSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 36.2 Advanced Methods in Biostatistics (Exercise Course)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
It is strongly recommended to have attended the compulsory modules of the previous semesters and the basic module in the biostatistics specialization (WP 2).

Semester
Recommended semester: 3

Duration
The completion of the module takes 1 semester.

Content
The lecture introduces and discusses advanced concepts and methods in Biostatistics.

The exercise class will deepen the understanding of the concepts discussed in the lecture and enable students to apply the methods and techniques learned in the lecture.

Learning outcomes
Students are familiar with advanced concepts and methods in Biostatistics.

Type of examination
Written exam or oral examination or term paper or exercise portfolio

Type of assessment
The successful completion of the module will be graded.

Requirements for the gain of ECTS credits
ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.
Module: WP 37 Selected Biostatistical Applications

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 37.1 Selected Biostatistical Applications (Lecture)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>15 h</td>
<td>(1)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 37.2 Selected Biostatistical Applications (Exercise Course)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 3 ECTS credits have to be acquired. Class attendance averages about 2 contact hours. Including time for self-study, 90 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
It is strongly recommended to have attended the compulsory modules of the previous semesters.

Semester
Recommended semester: 3

Duration
The completion of the module takes 1 semester.

Content
The lecture introduces and discusses selected biostatistical applications.

The exercise class will deepen the understanding of the applications discussed in the lecture and enable students to apply the methods and techniques learned in the lecture.

Learning outcomes
Students are familiar with biostatistical applications and have a deeper understanding for the application of concepts and methods in Biostatistics.

Type of examination
Written exam or oral examination or term paper or exercise portfolio

Type of assessment
The successful completion of the module will be graded.

Requirements for the gain of ECTS credits
ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.
Responsible contact: Boulesteix

Language(s): English

Additional information: None
Module: WP 38 Measurement and Modelling in Social Sciences

Programme
Master’s Programme: Statistics and Data Science
(Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 38.1 Measurement and Modelling in Social Sciences (Lecture)</td>
<td>WiSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 38.2 Measurement and Modelling in Social Sciences (Exercise Course)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
The requirements of the eligibility process for the master's degree in statistics and data science are expected; in particular, suitable background knowledge is needed on concepts of statistical modelling.

Semester
Recommended semester: 3

Duration
The completion of the module takes 1 semester.

Content
The module is concerned with different types of latent structures and their statistical handling. First the classical testing theory as a framework to describe the operationalization/measurement of continuous latent traits is discussed and also utilized to derive corresponding reliability measures like Cronbachs alpha. Then, different generalizations are studied, including structural equation models and Rasch-type models from probabilistic testing theory. In the second part of the module, methods for handling incomplete data in regression models are investigated in more detail. Advanced frequentist and Bayesian correction methods for measurement error, misclassification, and missing data are developed. In this context also an introduction into the framework of partial identification is given.
Learning outcomes
The students are familiar with statistical methods for formalizing and handling latent structures. They are able to apply and to adjust the corresponding methods. They also obtain a critical understanding of the different models developed and advocated in the literature, including their underlying explicit and implicit assumptions and limitations.

Type of examination
Written exam or oral examination or term paper or exercise portfolio

Type of assessment
The successful completion of the module will be graded.

Requirements for the gain of ECTS credits
ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.

Responsible contact
Augustin

Language(s)
English

Additional information
None
Module: WP 39 Computational Social Science

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 39.1 Computational Social Science (Lecture)</td>
<td>WiSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 39.2 Computational Social Science (Exercise Course)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
It is strongly recommended to have attended the compulsory modules of the previous semesters.

Semester
Recommended semester: 3

Duration
The completion of the module takes 1 semester.

Content
The module gives an overview of recent computer-intensive statistical and machine-learning based methods developed for typical settings in social sciences. Typical examples include social network analysis, the analysis of unstructured process-based data and the efficient use of dynamic para data in online surveys.

Learning outcomes
The students have an overview of recent problems and methods in computational social sciences. They have gained a deeper exemplary insight in a specialized method, its potential, specific modelling requirement and limitations.

Type of examination
Written exam or oral examination or term paper or exercise portfolio

Type of assessment
The successful completion of the module will be graded.

Requirements for the gain of ECTS credits
ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly
compulsory elective module parts) has/have been completed successfully.

<table>
<thead>
<tr>
<th>Responsible contact</th>
<th>Kreuter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 40 Selected Topics of Social Statistics and Social Data Science

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 40.1 Selected Topics of Social Statistics and Social Data Science (Lecture)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>15 h</td>
<td>(1)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 40.2 Selected Topics of Social Statistics and Social Data Science (Exercise Course)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 3 ECTS credits have to be acquired. Class attendance averages about 2 contact hours. Including time for self-study, 90 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
It is strongly recommended to have attended the compulsory modules of the previous semesters.

Semester
Recommended semester: 3

Duration
The completion of the module takes 1 semester.

Content
The lecture provides an insight into new statistical methods in Social Statistics and Social Data Science. Recent developments in established or new application areas are discussed.

The exercise class will deepen the understanding of the concepts discussed in the lecture and enable students to apply the methods and techniques learned in the lecture.

Learning outcomes
At the completion of the course, students are familiar with selected methods and results of current research.

Type of examination
Written exam or oral examination or term paper or exercise portfolio

Type of assessment
The successful completion of the module will be graded.
Requirements for the gain of ECTS credits

ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.

Responsible contact

Kreuter

Language(s)

English

Additional information

None
Module: WP 41 Nonparametric Econometrics

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 41.1 Nonparametric Econometrics (Lecture)</td>
<td>WiSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 41.2 Nonparametric Econometrics (Exercise Course)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
It is strongly recommended to have attended the compulsory modules of the previous semesters as well as at least one of the basic courses of the specialization in econometrics (WP 5, WP 17).

Semester
Recommended semester: 3

Duration
The completion of the module takes 1 semester.

Content
The module provides an overview over classical and modern non- and semiparametric methods, especially in the context of economic theory.

Learning outcomes
Students gain an overview of the most fundamental nonparametric methods in econometrics. They are familiar with the specific construction principles of nonparametric methods. They know advantages and short coming of nonparametric methods in comparison to their parametric counterparts.

Type of examination
Written exam or oral examination or term paper or exercise portfolio

Type of assessment
The successful completion of the module will be graded.

Requirements for the gain of ECTS credits
ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly
compulsory elective module parts) has/have been completed successfully.

<table>
<thead>
<tr>
<th>Responsible contact</th>
<th>Wilhelm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 42 Current Research in Econometrics

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 42.1 Current Research in Econometrics (Lecture)</td>
<td>WiSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 42.2 Current Research in Econometrics (Exercise Course)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
It is strongly recommended to have attended the compulsory modules of the previous semesters as well as at least one of the basic courses of the specialization in econometrics (WP 5, WP 17).

Semester
Recommended semester: 3

Duration
The completion of the module takes 1 semester.

Content
The lecture provides a broad overview on currently relevant research methods from the fields of econometrics. The exercise class will deepen the understanding of the concepts discussed in the lecture and enable students to apply the methods and techniques learned in the lecture.

Learning outcomes
Students are familiar with selected methods of current econometric research. They are aware of the current state of the art in the discussed fields and are able to understand and assess relevant research papers.

Type of examination
Written exam or oral examination or term paper or exercise portfolio

Type of assessment
The successful completion of the module will be graded.

Requirements for the gain of ECTS credits
ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly
compulsory elective module parts) has/have been completed successfully.

<table>
<thead>
<tr>
<th>Responsible contact</th>
<th>Wilhelm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 43 Advanced Applied Econometrics

Programme
Master’s Programme: Statistics and Data Science
(Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 43.1 Advanced Applied Econometrics (Lecture)</td>
<td>WiSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 43.2 Advanced Applied Econometrics (Exercise Course)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
It is strongly recommended to have attended the compulsory modules of the previous semesters as well as at least one of the basic courses of the specialization in econometrics (WP 5, WP 17).

Semester
Recommended semester: 3

Duration
The completion of the module takes 1 semester.

Content
The module gives an exemplary insight into methods of applied econometrics by discussing prototypic case studies from econometric literature.

Learning outcomes
The students learn to bridge econometric theory and applications. They understand the formalization process of basic economic questions into methodical questions and they can judge the limiting character of compromises to make in this context.

Type of examination
Written exam or oral examination or term paper or exercise portfolio

Type of assessment
The successful completion of the module will be graded.

Requirements for the gain of ECTS credits
ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly
compulsory elective module parts) has/have been completed successfully.

<table>
<thead>
<tr>
<th>Responsible contact</th>
<th>Wilhelm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 44 Advanced Statistical Modelling

| Programme | Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.) |

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 44.1 Advanced Statistical Modelling (Lecture)</td>
<td>WiSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 44.2 Advanced Statistical Modelling (Exercise Course)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

<table>
<thead>
<tr>
<th>Module type</th>
<th>Compulsory elective module with mandatory courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usability of the module in other programmes</td>
<td>None</td>
</tr>
<tr>
<td>Elective guidelines</td>
<td>The module can be chosen in compliance with the following rules: S. Appendix I</td>
</tr>
<tr>
<td>Entry requirements</td>
<td>It is strongly recommended to have attended the compulsory modules of the previous semesters as well as at least one of the basic courses of the specialization in methodology and modelling.</td>
</tr>
<tr>
<td>Semester</td>
<td>Recommended semester: 3</td>
</tr>
<tr>
<td>Duration</td>
<td>The completion of the module takes 1 semester.</td>
</tr>
<tr>
<td>Content</td>
<td>The lecture provides a broad overview on currently relevant research methods in methodology and modelling. The exercise class will deepen the understanding of the concepts discussed in the lecture and enable students to apply the methods and techniques learned in the lecture.</td>
</tr>
<tr>
<td>Learning outcomes</td>
<td>Students are familiar with selected methods of current research in methodology and modelling. They are aware of the current state of the art in the discussed fields and are able to understand and assess relevant research papers</td>
</tr>
<tr>
<td>Type of examination</td>
<td>Written exam or oral examination or term paper or exercise portfolio</td>
</tr>
<tr>
<td>Type of assessment</td>
<td>The successful completion of the module will be graded.</td>
</tr>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Küchenhoff</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>

Module: WP 45 Spatial Statistics

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 45.1 Spatial Statistics (Lecture)</td>
<td>WiSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 45.2 Spatial Statistics (Exercise Course)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
It is strongly recommended to have attended the compulsory modules of the previous semesters, in particular Statistical Modelling (P1) and Statistical Inference (P3).

Semester
Recommended semester: 3

Duration
The completion of the module takes 1 semester.

Content
The lecture covers the essential classes of spatial stochastic processes for the modelling of spatial phenomena: Gaussian processes, Markov random fields and spatial point processes. Explorative methods for spatial data will be discussed. The lecture also covers applications of spatial processes, e.g., Disease Mapping, Kriging, Image Analysis, geadditive regression, and Cox processes.

Learning outcomes
The course provides necessary knowledge and skills for the analysis of spatial data. It creates a basic understanding of the difficulties involved and to important techniques to overcome them.

Type of examination
Written exam or oral examination or term paper or exercise portfolio

Type of assessment
The successful completion of the module will be graded.
<table>
<thead>
<tr>
<th>Requirements for the gain of ECTS credits</th>
<th>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsible contact</td>
<td>Schmid</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>

Module: WP 46 Selected Topics of Methodology and Modelling

Programme

Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 46.1 Selected Topics of Methodology and Modelling</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>15 h</td>
<td>(1)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 46.2 Selected Topics of Methodology and Modelling (Exercise Course)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 3 ECTS credits have to be acquired. Class attendance averages about 2 contact hours. Including time for self-study, 90 hours have to be invested.

Module type

Compulsory elective module with mandatory courses

Usability of the module in other programmes

None

Elective guidelines

The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements

It is strongly recommended to have attended the compulsory modules of the previous semesters as well as at least one of the basic modules (WP 6, WP 21 and WP 22) of the specialization in methodology and modelling.

Semester

Recommended semester: 3

Duration

The completion of the module takes 1 semester.

Content

The module gives an exemplary insight into a specific topic in the area of methodology and modelling. It discusses important aspects of the formalization and abstraction of a practical research question into the theoretical framework as well as of the appropriate back-interpretation into the subject matter context.

Learning outcomes

The students deepen their knowledge about modelling and formalization processes, in particular their impact on applied research. They reflect modelling processes and their limitations from an advanced scientific perspective.

Type of examination

Written exam or oral examination or term paper or exercise portfolio

Type of assessment

The successful completion of the module will be graded.
Requirements for the gain of ECTS credits

ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.

Responsible contact

BITTE AUSFÜLLEN Augustin

Language(s)

English

Additional information

None
Module: WP 47 Advanced Programming

Programme: Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 47.1 Advanced Programming (Lecture)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>105 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 47.2 Advanced Programming (Exercise Course)</td>
<td>WiSe</td>
<td>30 h (2 SWS)</td>
<td>30 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 3 contact hours. Including time for self-study, 180 hours have to be invested.

Module type

Compulsory elective module with mandatory courses

Usability of the module in other programmes

None

Elective guidelines

The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements

It is strongly recommended to have attended the compulsory modules of the previous semesters; in particular, intermediate programming proficiency in R is required.

Semester

Recommended semester: 3

Duration

The completion of the module takes 1 semester.

Content

This course teaches advanced applied programming concepts, specifically for R. This includes advanced parallelization and workflow management tools suitable for fully reproducible analyses using R on HPC systems or in virtual machines and containers and the creation and maintenance of R packages. The course also covers metaprogramming in R (quoting, calls, expressions, forced and lazy evaluation), functional programming, as well as specific more advanced programming principles and algorithmic patterns. Throughout the course, (collaborative) programming challenges allow students to practice their project management and programming skills and gather hands-on experience in the use of collaboration tools like issue trackers, project boards and wikis.

Learning outcomes

Students can develop and maintain well-documented, well-structured and computationally efficient R packages that implement complex data processing pipelines reproducibly.
They are able to write and debug R code that makes use of “computing on the language” metaprogramming as well as parallelized or asynchronous code execution and functional programming and are familiar with modern collaboration tools for software development.

<table>
<thead>
<tr>
<th>Type of examination</th>
<th>Written exam or oral examination or term paper or exercise portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of assessment</td>
<td>The successful completion of the module will be graded.</td>
</tr>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Scheipl</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 48 Recent Advances in Theoretical Statistics

Programme

Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 48.1 Recent Advances in Theoretical Statistics (Lecture)</td>
<td>WiSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 48.2 Recent Advances in Theoretical Statistics (Exercise Course)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type

Compulsory elective module with mandatory courses

Usability of the module in other programmes

None

Elective guidelines

The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements

It is strongly recommended to have attended the compulsory modules of the previous semesters, in particular Statistical Inference (P3).

Semester

Recommended semester: 3

Duration

The completion of the module takes 1 semester.

Content

The module gives an overview and deeper insights in selected recent developments in theoretical statistics. This covers for instance current trends in robust and nonparametric frequentist and Bayesian statistics, in statistical inference of dynamic processes or non-standard data structures and statistical consequences of trends in modern probability theory. The corresponding exercise classes discuss recent applications and implementations.

Learning outcomes

The students have an overview of ongoing research in theoretical statistics and are able to acquire and classify current methodological developments in that area.

Type of examination

Written exam or oral examination or term paper or exercise portfolio

Type of assessment

The successful completion of the module will be graded.
Requirements for the gain of ECTS credits

ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.

<table>
<thead>
<tr>
<th>Responsible contact</th>
<th>Dean of Studies (currently: Augustin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 49 Selected Topics of Statistical Computing

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 49.1 Selected Topics of Statistical Computing (Lecture)</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>15 h</td>
<td>(1)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 49.2 Selected Topics of Statistical Computing (Exercise Course)</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 3 ECTS credits have to be acquired. Class attendance averages about 2 contact hours. Including time for self-study, 90 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
It is strongly recommended to have attended the compulsory modules of the previous semesters. In addition, intermediate programming proficiency in R is required.

Semester
Recommended semester: 3

Duration
The completion of the module takes 1 semester.

Content
The lecture provides an insight into the computational complexity of different statistical methods and algorithms. It further deals with estimating/training these models and architectures on suitable hardware.

The exercise class will deepen the understanding of the concepts discussed in the lecture and enable students to apply the methods and techniques learned in the lecture.

Learning outcomes
Students are introduced to estimating/training complex models/architectures.

Type of examination
Written exam or oral examination or term paper or exercise portfolio

Type of assessment
The successful completion of the module will be graded.
<table>
<thead>
<tr>
<th>Requirements for the gain of ECTS credits</th>
<th>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsible contact</td>
<td>Bischl</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 50 Selected Topics of Programming

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 50.1 Selected Topics of Programming (Lecture)</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>15 h</td>
<td>(1)</td>
</tr>
<tr>
<td>Exercise</td>
<td>WP 50.2 Selected Topics of Programming (Exercise Course)</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 3 ECTS credits have to be acquired. Class attendance averages about 2 contact hours. Including time for self-study, 90 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
It is strongly recommended to have attended the compulsory modules of the previous semesters and to have advanced knowledge and experience in programming software for data analysis.

Semester
Recommended semester: 3

Duration
The completion of the module takes 1 semester.

Content
This module provides students with additional courses to advance their understanding of data analysis related software. This includes extended programming knowledge, e.g. parallelization, advanced debugging, code profiling and optimization w.r.t. speed and memory efficiency and working on distributed systems, like high performance clusters etc., work with GPUs (especially in context of Machine Learning and Deep Learning) and domain specific programming knowledge, for example working with microarray data, signal processing, fMRI, Image Data and Natural Language processing, image segmentation and others. A further focus could lie in the programmatic generalization of reusable code in form of add-on packages for popular data analysis software like R or Python.

Learning outcomes
Students will acquire in depth knowledge within a specific programming language or a specific aspect within this
language. Students will become experts in the respective field of programming, data analysis or software development.

<table>
<thead>
<tr>
<th>Type of examination</th>
<th>Written exam or oral examination or term paper or exercise portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of assessment</td>
<td>The successful completion of the module will be graded.</td>
</tr>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Bischl</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 51 Advanced Research Methods in Theoretical Statistics

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>WP 51.1 Discussion of Current Research in Theoretical Statistics</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>75 h</td>
<td>(3)</td>
</tr>
<tr>
<td>Seminar</td>
<td>WP 51.2 Research Project in Theoretical Statistics</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>165 h</td>
<td>(6)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 9 ECTS credits have to be acquired. Class attendance averages about 2 contact hours. Including time for self-study, 270 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
It is strongly recommended to have attended the compulsory modules of the previous semesters.

Semester
Recommended semester: 3

Duration
The completion of the module takes 1 semester.

Content
In the seminar current research papers in theoretical statistics are discussed. Their basic methodical context, their specific methodological contributions and impact and the requirements and limitations of the underlying methods are worked out and mutually compared.

Learning outcomes
Students gain an in-depth insight into special research areas of theoretical statistics. They deepen their practice in scientific working methods by dealing with current research literature as well as its presentation and discussion.

Type of examination
Presentation and term paper

Type of assessment
The successful completion of the module will be graded.

Requirements for the gain of ECTS credits
ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly
compulsory elective module parts) has/have been completed successfully.

<table>
<thead>
<tr>
<th>Responsible contact</th>
<th>Nagler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 52 Advanced Research Methods in Machine Learning

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>WP 52.1 Discussion of Current Research in Machine Learning</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>75 h</td>
<td>(3)</td>
</tr>
<tr>
<td>Seminar</td>
<td>WP 52.2 Research Project in Machine Learning</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>165 h</td>
<td>(6)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 9 ECTS credits have to be acquired. Class attendance averages about 2 contact hours. Including time for self-study, 270 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
It is strongly recommended to have attended the compulsory modules of the previous semesters, in particular Supervised Learning (P2). Moreover, the knowledge from the basic modules in the machine learning specialization (WP 1 and W7) is needed.

Semester
Recommended semester: 3

Duration
The completion of the module takes 1 semester.

Content
The module provides an insight into current advanced methods for conducting research in the fields of machine learning and deep learning.

Learning outcomes
Students gain an in-depth insight into special research areas of machine learning and deep learning. They deepen their practice in scientific working methods by dealing with current research literature as well as its presentation and discussion.

Type of examination
Written exam or oral examination or term paper or exercise portfolio

Type of assessment
The successful completion of the module will be graded.
Requirements for the gain of ECTS credits

ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.

Responsible contact

Bischl

Language(s)

English

Additional information

For the attendance of a seminar a registration at the seminar distribution platform in the LSF system is needed.
Module: WP 53 Advanced Research Methods in Biostatistics

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>WP 53.1 Discussion of Current Research in Biostatistics</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>75 h</td>
<td>(3)</td>
</tr>
<tr>
<td>Seminar</td>
<td>WP 53.2 Research Project in Biostatistics</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>165 h</td>
<td>(6)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 9 ECTS credits have to be acquired. Class attendance averages about 2 contact hours. Including time for self-study, 270 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
It is strongly recommended to have attended the compulsory modules of the previous semesters. Moreover, knowledge from the basic module in the biostatistics specialization (WP 2) is needed, and it is highly recommended to have attended at least one further module from WP 6, WP 10 to WP 13, WP 21 and WP 35 to WP 37.

Semester
Recommended semester: 3

Duration
The completion of the module takes 1 semester.

Content
The module provides an insight into current advanced methods for conducting research in the field of biostatistics.

Learning outcomes
Students gain an in-depth insight into special research areas of biostatistics. They deepen their practice in scientific working methods by dealing with current research literature as well as its presentation and discussion.

Type of examination
Presentation and term paper

Type of assessment
The successful completion of the module will be graded.

Requirements for the gain of ECTS credits
ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly
compulsory elective module parts) has/have been completed successfully.

<table>
<thead>
<tr>
<th>Responsible contact</th>
<th>Boulesteix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 54 Advanced Research Methods in Social Statistics and Social Data Science

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>WP 54.1 Discussion of Current Research in Social Statistics and Social Data Science</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>75 h</td>
<td>(3)</td>
</tr>
<tr>
<td>Seminar</td>
<td>WP 54.2 Research Project in Social Statistics and Social Data Science</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>165 h</td>
<td>(6)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 9 ECTS credits have to be acquired. Class attendance averages about 2 contact hours. Including time for self-study, 270 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
It is strongly recommended to have attended the compulsory modules of the previous semesters and two of the basic modules (WP 3, WP 14 and WP 38) in the social statistics and social data science specialization.

Semester
Recommended semester: 3

Duration
The completion of the module takes 1 semester.

Content
The module provides an insight into current advanced methods for conducting research in the field of social statistics and social data science.

Learning outcomes
Students gain an in-depth insight into special research areas of social statistics and social data science. They deepen their practice in scientific working methods by dealing with current research literature as well as its presentation and discussion.

Type of examination
Presentation and term paper

Type of assessment
The successful completion of the module will be graded.
<table>
<thead>
<tr>
<th>Requirements for the gain of ECTS credits</th>
<th>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsible contact</td>
<td>Kreuter</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 55 Advanced Research Methods in Econometrics

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>WP 55.1 Discussion of Current Research in Econometrics</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>75 h</td>
<td>(3)</td>
</tr>
<tr>
<td>Seminar</td>
<td>WP 55.2 Research Project in Econometrics</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>165 h</td>
<td>(6)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 9 ECTS credits have to be acquired. Class attendance averages about 2 contact hours. Including time for self-study, 270 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
It is strongly recommended to have attended the compulsory modules of the previous semesters, the two basic modules (WP and WP 17) of the econometrics specialization and WP 19 or WP 41.

Semester
Recommended semester: 3

Duration
The completion of the module takes 1 semester.

Content
The module provides an insight into current advanced methods for conducting research in the field of econometrics.

Learning outcomes
Students gain an in-depth insight into special research areas of econometrics. They deepen their practice in scientific working methods by dealing with current research literature as well as its presentation and discussion.

Type of examination
Presentation and term paper

Type of assessment
The successful completion of the module will be graded.

Requirements for the gain of ECTS credits
ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly
compulsory elective module parts) has/have been completed successfully.

<table>
<thead>
<tr>
<th>Responsible contact</th>
<th>Wilhelm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 56 Advanced Research Methods in Methodology and Modelling

Programme
Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>WP 56.1 Discussion of Current Research in Methodology and Modelling</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>75 h</td>
<td>(3)</td>
</tr>
<tr>
<td>Seminar</td>
<td>WP 56.2 Research Project in Methodology and Modelling</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>165 h</td>
<td>(6)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 9 ECTS credits have to be acquired. Class attendance averages about 2 contact hours. Including time for self-study, 270 hours have to be invested.

Module type
Compulsory elective module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
The module can be chosen in compliance with the following rules: S. Appendix I

Entry requirements
It is strongly recommended to have attended the compulsory modules of the previous semesters and two of the basic modules (WP 6, WP 21 and WP 22) in the methodology and modelling specialisation.

Semester
Recommended semester: 3

Duration
The completion of the module takes 1 semester.

Content
The module provides an insight into current advanced methods for conducting research in the field of statistical methodology or statistical modelling.

Learning outcomes
Students gain an in-depth insight into special research areas of statistical methodology or statistical modelling. They deepen their practice in scientific working methods by dealing with current research literature as well as its presentation and discussion.

Type of examination
Presentation and term paper

Type of assessment
The successful completion of the module will be graded.
<table>
<thead>
<tr>
<th>Requirements for the gain of ECTS credits</th>
<th>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsible contact</td>
<td>Schmid</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: P 5 Final Module

Programme

Master’s Programme: Statistics and Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master’s Thesis</td>
<td>P 5.1 Master's Thesis</td>
<td>WiSe and SoSe</td>
<td>-</td>
<td>840 h</td>
<td>(28)</td>
</tr>
<tr>
<td>Disputation</td>
<td>P 5.2 Disputation</td>
<td>WiSe and SoSe</td>
<td>-</td>
<td>60 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 30 ECTS credits have to be acquired. Class attendance averages about 0 contact hours. Including time for self-study, 900 hours have to be invested.

Module type

Mandatory module

Usability of the module in other programmes

None

Elective guidelines

None

Entry requirements

It is strongly recommended to have attended the compulsory modules of the previous semesters, in particular Statistical Modelling (P1), Supervised Learning (P2) and Statistical Inference (P3)

Semester

Recommended semester: 4

Duration

The completion of the module takes 1 semester.

Content

The module includes an independently written thesis and its defense.

Master’s thesis: In a supervised but independently prepared thesis, a topic from statistics and data science is explored according to scientific principles.

The master’s thesis serves as proof of the ability to practically work on a scientific project with statistical problems.

Disputation: During an oral examination, the master’s thesis is defended, and an academic discussion is held on the topic of the thesis.
Learning outcomes

Students demonstrate the ability to independently complete and present a scientific project in Statistics and Data Science.

Type of examination

Master’s thesis and disputation

Type of assessment

The successful completion of the module will be graded.

Requirements for the gain of ECTS credits

ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.

Responsible contact

Schmid

Language(s)

English

Additional information

Grades of master thesis and disputation are being weighted in the ratio 25 to 5.

Appendix I: Rules for the choice of compulsory elective modules

With regard to the compulsory elective areas "Machine Learning", "Biostatistics", "Social Statistics and Data Science", "Econometrics" and "Methodology and Modelling", exactly one compulsory elective area must be chosen.

For this purpose, elective modules amounting to a total of 51 ECTS credits each are to be selected from the elective modules WP 1 to WP 56, namely

1. for compulsory elective area "Machine Learning"
 - the compulsory elective modules WP 1, WP 7 and WP 52,
 - from the compulsory elective modules WP 8, WP 9 and WP 32 to WP 34 compulsory elective modules amounting to at least 12 ECTS credits and
 - from the compulsory elective modules WP 1 to WP 51 to achieve the 51 ECTS points per compulsory elective area, further compulsory elective modules amounting to a maximum of 18 ECTS points,

2. for compulsory elective area "Biostatistics"
 - the compulsory elective modules WP 2 and WP 53,
 - from the compulsory elective modules WP 10 to WP 13 and WP 35 to WP 37 compulsory elective modules in the amount of 12 ECTS credits,
 - from the compulsory elective modules WP 6, WP 10 to WP 13, WP 21 and WP 35 to WP 37 further compulsory elective modules amounting to at least 6 ECTS credits and
 - from the compulsory elective modules WP 1 to WP 51 to achieve the 51 ECTS points per compulsory elective area, further compulsory elective modules amounting to a maximum of 18 ECTS points,

3. for compulsory elective area "Social Statistics and Social Data Science"
 - the compulsory elective module WP 54,
 - two compulsory elective modules from the compulsory elective modules WP 3, WP 14 and WP 38,
- from the compulsory elective modules WP 3 to WP 6, WP 14 to WP 16, WP 21, WP 22 and WP 38 to WP 40 further compulsory elective modules amounting to at least 12 ECTS credits and
- from the compulsory elective modules WP 1 to WP 51 to achieve the 51 ECTS points per compulsory elective area, further compulsory elective modules amounting to a maximum of 18 ECTS points,

4. for compulsory elective area "Econometrics"
- the compulsory elective modules WP 5, WP 17, (WP 19 or WP 41) and WP 55,
- from the compulsory elective modules WP 4, WP 6, WP 15, WP 18 to WP 22, WP 38 and WP 41 to WP 43 further compulsory elective modules amounting to at least 6 ECTS credits and
- from the compulsory elective modules WP 1 to WP 51 to achieve the 51 ECTS points per compulsory elective area, further compulsory elective modules amounting to a maximum of 18 ECTS points,

5. for compulsory elective area "Methodology and Modelling"
- the compulsory elective module WP 56,
- from the compulsory elective modules WP 6, WP 21 and WP 22 two compulsory elective modules,
- from the compulsory elective modules WP 6, WP 21 to WP 26, WP 38 and WP 44 to WP 46 further compulsory elective modules amounting to at least 12 ECTS credits and
- from the compulsory elective modules WP 1 to WP 51 to achieve the 51 ECTS points per compulsory elective area, further compulsory elective modules amounting to a maximum of 18 ECTS points.

In the 1st semester elective modules with a total of 12 ECTS credits, in the 2nd semester elective modules with a total of 18 ECTS credits and in the 3rd semester elective modules with a total of 21 ECTS credits are to be chosen.